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Abstract
Osteoarthritis (OA) is a prevalent musculoskeletal disease affecting middle-aged and elderly individuals, with knee pain 
as a common complaint. Standard therapy approaches generally attempt to alleviate pain and inflammation, using various 
pharmacological and non-pharmacological options. However, the efficacy of these therapies in long-term tissue repair 
remains debated. As an alternative, regenerative medicine offers a promising strategy, with decreased adverse event rates 
and increasing evidence of safety and efficacy. This review will outline current advances in regenerative medicine for knee 
OA, emphasizing outpatient clinic-based therapies that use orthobiological and non-biological products. Different strategies 
based on orthobiologics are discussed as potential regenerative options for the management of knee OA. Cell-free therapies 
including platelet-rich plasma, autologous anti-inflammatories, exosomes, human placenta extract, and mitochondrial 
transplantation are discussed, focusing on their potential for cartilage regeneration. Additionally, cell-based therapies with 
regenerative properties including bone marrow aspirate concentrate, adipose stromal vascular fraction, microfat, nanofat, 
stem cell therapy, and genetically modified cells as part of orthobiologics, are being investigated. Also, this study is looking 
into non-biological approaches such as using gold-induced cytokines, extracorporeal shockwave therapy, and ozone therapy. 
The mechanisms of action, effectiveness, and clinical applications of each therapy are being explored, providing insights 
into their role in the management of knee OA.

Keywords  Osteoarthritis · Orthobiologics · Regenerative medicine · Platelet rich plasma · Human placenta extract · 
Adipose stromal vascular fraction

Introduction

Osteoarthritis (OA) is a common musculoskeletal disease 
that mainly affects middle-aged and elderly individuals 
[1]. As the population continues to age and obesity rates 
rise, there is a predicted increase in the occurrence of OA 
in the future. According to projections, by the year 2040, 
approximately one in four adults aged 18 years and older 
will be diagnosed with arthritis by a medical professional 
[1]. Knee pain is one of the most common complaints that 
patients seek help for, and the most common cause of pain is 
OA [2]. OA has no cure, despite being highly prevalent and 
significantly impacting the quality of life for those affected 
[3]. A history of prior knee trauma (increases the risk of knee 
OA by 3.86 times), advancing age (significant risk factor), 
being female, having excess weight or obesity, engaging in 
repetitive joint use, bone density, muscle weakness, and joint 
laxity all contribute significantly to the development of knee 
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OA [4, 5]. Standard treatment modalities act by stopping/
minimizing pain levels or reducing the inflammatory process 
to facilitate endogenous repair mechanisms. There are two 
types of treatment for knee OA: nonsurgical and surgical. 
Nonsurgical treatment consists of non-pharmacological as 
well as pharmacological treatment, and non-pharmacological 
treatment is the core first-line treatment for patients with OA, 
which includes education, self-management, exercise, and 
weight loss. Walking canes, braces, and orthotics are other 
primary non-pharmacological treatments for OA.

Standard pharmacological treatments for musculoskel-
etal conditions typically include paracetamol, oral or topi-
cal nonsteroidal anti-inflammatory drugs (NSAIDs), and 
intra-articular corticosteroids. While these medications are 
commonly recommended for managing acute and chronic 
musculoskeletal pain, recent Cochrane Database Systematic 
Reviews have highlighted a lack of robust evidence sup-
porting their efficacy in promoting long-term tissue heal-
ing [4, 5]. In fact, NSAIDs may even hinder the healing 
process [6, 7]. Studies comparing intra-articular steroid 
injections to saline injections for knee OA treatment have 
not consistently shown improvements in pain relief, with 
some evidence suggesting accelerated OA progression in 
patients receiving steroid injections [8]. Moreover, the use 
of standard local steroid injections has been associated with 
detrimental effects on chondrocytes, both in experimental 
models and clinical settings [9, 10]. In early-stage manage-
ment, alternative therapies such as glucosamine/chondroi-
tin supplements [11], hyaluronic acid injections [12], and 
destructive modalities like radiofrequency ablation and 
botulinum toxin injections [13] are sometimes employed, 
although their effectiveness remains a topic of debate.

In addition to symptomatic treatments, interventions 
aimed at promoting cell-based repair are being increasingly 
explored. Techniques such as abrasion arthroplasty [14], 
debridement [15], and microfracture [16] are utilized to 
stimulate the migration of stem cells from the bone mar-
row to facilitate tissue repair. Restorative procedures like 
mosaicplasty [17], and autologous chondrocyte implanta-
tion (ACI) involve harvesting patient-derived chondrocytes 
from non-load-bearing regions, expanding them in culture, 
and implanting them into the damaged area. Matrix-assisted 
autologous chondrocyte implantation (MACI), which uti-
lizes a collagen scaffold to support implanted cells, repre-
sents an innovative FDA-approved approach that leverages 
tissue engineering principles to enhance cartilage repair. 
Following these techniques, the expanded chondrocytes are 
returned to the surgeon about six to eight weeks after they 
are obtained. In all of these methods, the conditions of the 
arthroscopic operating room as well as GMP grade facili-
ties are necessary, which may not be possible in all clinics. 
Therefore, we will not discuss them in this article. Total knee 
arthroplasty is a preferred surgical option for severe OA by 

some surgeons, as it has been shown to be the most effective 
procedure for end-stage knee OA. However, recent meta-
analyses have cast doubt on the efficacy of many standard 
orthopedic surgeries [18], such as arthroscopic surgery for 
knee arthritis and meniscal tears in older patients, suggesting 
that they may not be superior to sham surgery or conserva-
tive treatments and could potentially accelerate degenera-
tion in affected knee joints [19]. On the other hand, regen-
erative medicine treatments have shown promising results 
with lower rates of adverse events compared to traditional 
allopathic options [20], as evidenced by a growing body 
of statistically significant medical literature [21]. The field 
of Tissue Engineering and Regenerative Medicine (TERM) 
aims to create three-dimensional cell/biomaterial complexes 
that mimic living tissues or organs to repair or regenerate 
damaged tissues. TERM strategies typically involve cell/
biomaterial/growth factor complexes [22]; cell-based thera-
pies like stem cell transplantation, immunotherapy, and gene 
therapy [23–25]; as well as biomaterial systems that inte-
grate into tissues when implanted in the body [26]. While 
scaffold-based products require open surgery for placement 
in the knee, this review focuses on injectable products that 
can be used in clinical settings.

Tissue Engineering and Regenerative Medicine (TERM) 
offers various strategies for the treatment of knee OA, which 
can be categorized into two groups: orthobiological and 
non-biological products. Orthobiologics are biologically 
augmented substances derived from a human source, either 
from the patient or a donor, used to promote the healing of 
musculoskeletal injuries. However, the terminology used to 
describe orthobiologic therapies can be confusing due to the 
variation in their contents and mechanisms of action [27].

Prolotherapy is one mechanism by which orthobiologics 
exert their effect, involving the injection of a natural irritant, 
such as high-concentration dextrose, into the soft tissue of 
an injured joint to stimulate the body's healing response. 
This leads to a temporary, low-grade inflammation at the 
injection site, which activates fibroblasts and promotes the 
production of mature collagen, strengthening connective tis-
sue. Some experts consider Platelet-Rich Plasma (PRP) as a 
form of prolotherapy treatment due to its similar mechanism 
of action [28].

Therapies Based on Orthobiological 
Products

The evolution of regenerative therapies for OA (OA) ini-
tially centered around the concept of using administered 
cells to integrate into damaged areas and differentiate into 
chondrocytes [29]. However, in recent years, there has been 
a shift towards utilizing intra-articular injectable 'orthobio-
logics' as a means to alleviate symptoms and potentially slow 



2106	 Stem Cell Reviews and Reports (2024) 20:2104–2123

down or prevent disease progression without resorting to 
joint replacement. Extensive research has been conducted 
to investigate the efficacy and outcomes of these treatments. 
Given the absence of a vascular network in articular cartilage 
[30], intra-articular injections, particularly orthobiological 
agents, have emerged as a preferred approach for enhanc-
ing cartilage regeneration. The biological agents used in 
the treatment of knee OA can be broadly classified into two 
main categories: cell-based therapies and cell-free therapies.

Cell‑Free Therapies

Table 1 summarizes various cell-free therapies studies in 
the treatment of knee Osteoarthritis, including the therapy 
methods, study types, sample size, outcome measures, dura-
tion of follow-up, and adverse effects.

Platelet Rich Plasma

Platelet-rich plasma (PRP) is a prevalent orthobiologic ther-
apy that can be readily obtained by centrifuging or filtering 
the blood of patients. PRP consists of platelets and plasma, 
with platelets being non-nucleated cells containing vesicles 
carrying bioactive factors [31]. Plasma contains bioactive 
molecules and chemokines that aid in the mobilization of 
mesenchymal stem cells (MSCs) from their perivascular 
niches, along with mitogens that promote MSC prolifera-
tion [32]. PRP is also able to alleviate inflammation, which 
makes PRP one of the most extensively studied non-invasive 
interventions for cartilage regeneration in the context of OA. 
There are a number of factors that can affect the effective-
ness of PRP, including individual patient factors, platelet 
levels, different procurement methods, and different concen-
trating mechanisms [33]. There is significant variation in the 
concentration of platelets in PRP preparations, and there is 
no consensus regarding the optimal concentration range that 
should be used for optimal results in PRP preparations [34].

Numerous studies have indicated that an effective con-
centration of platelet-rich plasma (PRP) consists of approxi-
mately 1,000,000 platelets per microliter (μL) in a 5 mL 
plasma volume, which has been correlated with enhanced 
clinical outcomes [35]. PRP formulations are commonly cat-
egorized based on the presence of low levels of white blood 
cells (referred to as leukocyte-poor PRP) or high levels of 
white blood cells (known as leukocyte-rich PRP). There are 
commercially available PRP systems, which offer options 
such as Leukocyte-Rich PRP (LR-PRP) and Leukocyte-
Poor PRP (LP-PRP) [36]. Additionally, the incorporation 
of exogenous factors, such as thrombin, is becoming an 
increasingly viable strategy as a way to enhance the acti-
vation of platelets within PRP formulations [37]. Despite 
promising findings, ongoing research continually refines our 

understanding of the optimal PRP formulations and concen-
trations for maximizing the effectiveness of cartilage repair 
and OA treatment.

Autologous Anti‑Inflammatories (AAIs)

There is no doubt that inflammation plays a key role in the 
pathophysiology of OA. Proinflammatory cytokines as well 
as matrix metalloproteinases (MMP) exhibit upregulation in 
both the synovial fluid and tissues of patients with OA [38]. 
In addition, the presence of elevated levels of interleukin-1 
(IL-1) receptors on the surface of chondrocytes and synovial 
fibroblasts further emphasize the presence of an inflamma-
tory environment in OA patients [39].

In light of the fact that a significant portion of the anti-
inflammatory agents in blood are derived from white blood 
cells rather than platelets, research has been conducted to 
develop strategies that specifically target white blood cells 
or the anti-inflammatory factors they release. One such 
strategy involves the utilization of autologous conditioned 
serum (ACS), which is a cell-free serum containing anti-
inflammatory factors released from activated white blood 
cells [40]. Additionally, autologous protein solution (APS) 
is generated by processing platelet-rich plasma (PRP) with 
a high concentration of white blood cells, aiming to repli-
cate the release and concentration of anti-inflammatory fac-
tors [41].. Several studies have demonstrated that ACS is a 
highly effective treatment for OA, and attributed its ability 
to reduce inflammation primarily due to its interaction with 
the interleukin-1 receptor antagonist (IL-1Ra), a compound 
that effectively inhibits the production of IL-1 in OA patients 
[42]. In the late 1990s, Orthokine, the first commercially 
available ACS product, obtained from ACS processing, 
represented an important step forward [43]. As a result of 
incubating blood with glass beads for 24 h at 37°C, it was 
discovered that macrophages, monocytes, and platelets were 
able to produce IL-1Ra rapidly [44]. It has been shown that 
intra-articular injections of ACS have demonstrated a sig-
nificant reduction in symptoms associated with knee OA, 
an improvement in range of motion (ROM), and an overall 
improvement in quality of life for individuals with knee OA 
[45]. Despite the apparent efficacy of ACS (Orthokine) as a 
treatment option for knee OA, it is important to mention that 
this product has not yet received approval from the United 
States Food and Drug Administration (FDA). To be able to 
fully integrate ACS into mainstream treatment approaches 
for OA, further research and regulatory considerations are 
required.

Exosomes

A relatively new treatment approach for knee OA is to 
inject exosomes into the knee joint [46]. Exosomes are 
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extracellular vesicles that are released by a variety of cell 
types, such as stem cells from adipose tissue or bone mar-
row, as part of their metabolism. Exosomes contain a variety 
of molecules including proteins, lipids, and nucleic acids 
that can play a role in the repair and regeneration of tissues 
[47]. There is evidence that exosomes have the potential to 
influence the behavior and function of different cell types 
involved in knee OA, including chondrocytes, synoviocytes, 
and immune cells. They are capable of stimulating chon-
drocytes to produce collagen and proteoglycans, which are 
essential components in cartilage tissue [48]. Moreover, 
exosomes can modulate the immune response in the joint, 
promoting an anti-inflammatory environment and reducing 
tissue damage as well as controlling the activity of synovio-
cytes [49]. Exosomes are injected directly into the knee joint 
under ultrasound or fluoroscopy guidance to stimulate the 
regeneration of damaged cartilage and reduce inflammation 
in the joint [50, 51].

Studies have demonstrated that exosomes derived from 
mesenchymal stem cells (MSCs) contain various anti-
inflammatory factors, including interleukin-10 (IL-10), 
transforming growth factor-beta (TGF-beta) [52], and 
indoleamine 2,3-dioxygenase (IDO) [53]. These exosomes 
have been found to suppress inflammatory responses within 
joints and also contain growth factors [54], such as insulin-
like growth factor 1 (IGF-1)[55], hepatocyte growth factor 
(HGF) [56], and vascular endothelial growth factor (VEGF) 
[57], which promote the proliferation of chondrocytes and 
the synthesis of the extracellular matrix. These growth 
factors facilitate chondrocyte proliferation and extracel-
lular matrix synthesis. Furthermore, exosomes can inhibit 
the activation of immune cells, particularly macrophages, 
and reduce the production of pro-inflammatory cytokines, 
thereby mitigating inflammation associated with knee 
OA. Although research on the application of exosomes as 
a treatment for knee OA is still in its nascent stages, ini-
tial studies and reports have yielded promising outcomes. 
Patients have reported decreased pain, improved joint func-
tion, and enhanced mobility following exosome injections 
for knee OA. However, it is important to note that the cost 
of this treatment can be substantial, and insurance coverage 
may vary based on individual circumstances. Additional 
research is required to establish exosome therapy's safety, 
efficacy, and long-term advantages for knee OA.

Human Placenta Extract (HPE)

Human placental extract (HPE) is a substance derived from 
the placenta of humans. It contains a variety of growth fac-
tors, cytokines, and other bioactive molecules that have 
potential therapeutic effects due to their biological activi-
ties [57].

Previous studies have proposed that intra-articular injec-
tions of HPE may offer benefits in terms of pain reduction, 
improved function, and enhanced quality of life for patients 
afflicted with knee OA [58]. Moreover, HPE exhibits immu-
nomodulatory properties, enabling it to regulate and suppress 
aberrant immune responses that contribute to the pathogen-
esis and progression of knee OA [59]. HPE contains various 
growth factors, including epidermal growth factor, fibroblast 
growth factor, and vascular endothelial growth factor, which 
have demonstrated the ability to facilitate tissue healing and 
regeneration [60]. As HPE stimulates the formation of new 
cells and tissues inside the knee joint, it may be able to repair 
cartilage and reduce the pain and stiffness associated with OA 
in addition to improving joint function [61]. The process of 
angiogenesis is often elevated in osteoarthritic joints. Since 
HPE has angiogenic effects, as it has been demonstrated by 
its potential to form blood vessels, it can help the formation 
of new blood vessels in the knee joint and reduce inflamma-
tion. However, HPE is not yet widely accepted or endorsed by 
established medical organizations as a treatment for knee OA, 
and more research is needed to assess its safety and efficacy 
in these patients [62] [63].

Mitochondrial Transplantation

There are several favorable characteristics of mitochondrial 
transplantation that make it a promising strategy for treating 
OA. There is evidence that mitochondria, intricate organelles 
which play a crucial role in maintaining cellular homeosta-
sis by producing energy, are dysfunctional in chondrocytes 
suffering from OA [64]. Mitochondrial dysfunctions include 
impaired mitochondrial respiratory chain enzyme activities, 
altered membrane potentials, and reduced ATP production, 
which result in cartilage degeneration through oxidative 
stress, calcium homeostasis disruption, and mitochondrial 
DNA mutation [65]. As OA's impact on chondrocytes, 
matrix anabolism and catabolism are unbalanced, resulting in 
reduced mitochondrial activity. Autophagy, a cellular mecha-
nism that eliminates unwanted components, is diminished in 
the presence of OA due to increased reactive oxygen species 
(ROS) levels, which inhibits the progression of autophagy 
in lysosomes. These dysfunctional mitochondria and lys-
osomes contribute to autophagosome accumulation and OA 
progression [66]. The transplantation of mitochondria may be 
viewed as a potential therapeutic strategy for the treatment of 
mitochondrial dysfunction seen in a variety of diseases. The 
intervention enhances the synthesis of ATP, the consumption 
of oxygen, and the viability of cells, positively affecting the 
system as a whole [67]. There are no human studies currently 
being conducted on mitochondrial transplantation for OA, but 
a study conducted on rats has shown that mitochondrial trans-
plantation can be effective for the treatment of this condition.
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Cell‑Based Therapies

Table 2 summarizes the studies conducted on various cell- 
based therapies in the treatment of osteoarthritis.

Bone Marrow Aspirate Concentrate (BMAC)

Bone marrow aspirate and concentrate (BMAC) constitute a 
heterogeneous mixture of mixed connective tissue progeni-
tor cells that have demonstrated the ability to expedite bone 
repair and exert immunomodulatory effects [75]. BMAC 
is obtained from bone marrow aspirates and promptly pro-
cessed for immediate use [76]. The procedure for bone mar-
row aspiration is typically executed percutaneously and is 
characterized by its rapidity, safety, and relatively low level 
of donor site morbidity [77]. The aspirate is obtained in 
the form of a single-cell suspension, allowing for immedi-
ate processing and utilization with minimal manipulation, 
thereby obviating the need for extensive clinical trials for 
regulatory approval. Depending on the technique employed 
and the patient's age, various potential sites for bone marrow 
harvest exist, including the iliac crest (the most common), 
sternum, calcaneus, tibia (particularly when the iliac crest 
is inaccessible or unsuitable), and vertebrae. The iliac crest 
exhibits a higher concentration of osteoblastic progenitor 
cells compared to the tibia, calcaneus, or other anatomi-
cal regions [78, 79]. Since fibroblast colony forming units 
(CFU-F) diminish with age, this could have an impact on the 
efficacy of stem cell transplantation in the elderly population 
[80]. There are many mesenchymal stem cells (MSCs) in 
BMAC, which play a key role in cartilage regeneration after 
injury [81]. MSCs have the potential to differentiate into 
various cell types, including cartilage cells. After injection, 
they can migrate to the damaged cartilage and promote the 
repair and regeneration [82]. Also, by stimulating the sur-
rounding cells, MSCs can stimulate new cartilage to grow 
and help repair the damaged area [83]. Additionally, MSCs 
have anti-inflammatory properties, capable of modulating 
the immune response within the joint by interfering with 
immune cells, like T-cells, which help to slow the progres-
sion of OA and possibly slow down the degeneration of the 
joints as well [84].

In a systematic review conducted by Keeling et  al., 
the efficacy of isolated Bone Marrow Aspirate Concen-
trate (BMAC) injection for OA treatment in the knee joint 
was evaluated using data from eight studies. The analysis 
revealed significant improvements in patient-reported out-
comes, with 34 out of 36 patients showing notable enhance-
ment from baseline to the latest follow-up assessment. The 
researchers concluded that BMAC injection effectively alle-
viates pain and enhances patient-reported outcomes within 
short- to midterm follow-up periods. However, BMAC did 

not exhibit superiority over other commonly used biologic 
therapies such as Platelet-Rich Plasma (PRP) and Micro-
fragmented Adipose Tissue (MFAT) in the context of OA 
treatment [85].

Adipose Stromal Vascular Fraction (SVF)

Stromal vascular fraction (SVF), also referred to as adi-
pose-derived stromal vascular fraction injection, is a form 
of regenerative therapy utilized in the management of knee 
OA [86]. SVF is derived from adipose tissue, which contains 
a diverse array of components including stem cells, immune 
cells, growth factors, and other bioactive factors. Recently, 
autologous SVF has emerged as a promising source for 
delivering adipose-derived mesenchymal stem cells effec-
tively [87]. SVF can be conveniently prepared on-site using 
a small volume of lipoaspirate, requiring minimal training. 
This can be achieved through manual protocols or automated 
devices, such as integrated equipment, following standard-
ized commercial procedures [88]. Injection of concentrated 
SVF into the knee joint is believed to work by promoting 
the repair of tissues, reducing inflammation, and possibly 
slowing the progression of OA. From a medical perspective, 
it's important for SVF to contain plenty of mesenchymal 
stem cells (MSCs), endothelial progenitor cells, and M2 
macrophages [89]. The stem cells in SVF can differentiate 
into diverse cell types and contribute to repairing and regen-
erating damaged tissues. There's evidence from a case report 
showing that bone regeneration can be enhanced by utilizing 
adipose-derived cells and growth factors [90, 91]. Also, the 
immune cells and growth factors present within SVF have 
the ability to modulate the inflammation response and speed 
up the healing process [92].

There is ongoing debate regarding the comparative thera-
peutic potential of adipose-derived stromal/stem cells ver-
sus bone marrow stromal/stem cells across various clinical 
applications. Adipose tissue is believed to contain signifi-
cantly more mesenchymal stem cells (MSCs) compared to 
bone marrow, with a less invasive and painful extraction pro-
cess [93, 94]. Conversely, bone marrow MSCs are typically 
obtained through iliac crest puncture, which poses risks such 
as potential long-term impairment of blood cell regeneration 
due to the removal of a large number of bone marrow cells 
[95]. The characteristics of SVF, including nucleated cell 
count, cell viability, and flow cytometry results, appear to be 
consistent regardless of individual factors like age, gender, 
BMI, or ethnicity [96]. Studies have shown that SVF injec-
tions can offer benefits to patients with knee OA, leading 
to reduced pain levels and improved functional outcomes.

A systematic review by Shanmugasundaram et al. exam-
ined 11 studies on SVF injection for knee OA, revealing 
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positive outcomes in terms of pain relief, range of motion, 
and functional scores. The authors concluded that SVF 
injection is a safe and effective treatment option for knee OA 
patients who have not responded to conservative or arthro-
scopic interventions [97].

While the use of adipose SVF injections shows promise in 
knee OA management, regulatory approval from bodies like 
the FDA is still pending. Further clinical trials are necessary 
to establish optimal dosing, quality standards, injectate char-
acterization, cost-effectiveness, potential adverse events, and 
long-term effects of SVF therapy [98].

Microfat and Nanofat

Nanofat and microfat are products from the SVF process 
in liposuction, possessing regenerative properties but with 
slight differences. Liposuction fat undergoes physical 
breakdown, initially becoming microfat with a 0.2–0.8 mm 
size. Upon further breakdown, it transforms into nanofat. 
In nanofat, we almost have no adipose cells, while micro-
fat retains some adipose cells [99]. Both products, nanofat 
and microfat, are likely usable for treating knee OA through 
intra-articular injection. For this purpose, studies have been 
conducted on both nanofat [100] and microfat [101].

Stem Cell Therapy

Cell-based therapies have gained significant attention as a 
potential treatment strategy for musculoskeletal disorders, 
with stem cells likened to seeds in the garden of regenerative 
medicine. Stem cells are crucial players in this field, with 
a limited presence in circulating blood. The primary types 
of stem cells utilized in therapeutic applications include 
pluripotent stem cells (embryonic stem cells and induced 
pluripotent stem cells) and multipotent stem cells (mesen-
chymal stem cells and hematopoietic stem cells). Here, we 
will review the various types of stem cells utilized in treating 
knee OA.

Induced Pluripotent Stem Cells (iPS CELLS)

Induced pluripotent stem cells (iPSCs) are generated by 
reprogramming adult cells to assume an embryonic stem 
cell-like state [102]. This process involves activating genes 
and factors essential for maintaining the characteristics of 
embryonic stem cells, typically achieved through viral vec-
tors or enzymatic methods [103]. iPSCs exhibit similarities 
to embryonic stem cells regarding pluripotency, cellular 
structure, gene expression, and proliferation capacity. Nota-
bly, iPSCs are patient-specific, reducing the risk of immune 
responses and positioning them as an ideal cell source for 
cell-based therapies [104]. However, it is crucial to consider 
that iPSCs have the potential to develop into cancerous cells 

[105]. The ability of iPSCs to differentiate into chondrocytes 
and their utility in disease modeling have been demonstrated 
in various studies [106–108]. For instance, Diekman et al. 
established an in vitro model of cartilage defects to inves-
tigate the regenerative potential of iPSC-derived chondro-
cytes. These chondrocytes, derived from iPSCs, were able to 
produce cartilage matrix within a week of seeding, indicat-
ing their reparative capabilities.

In a recent study by Rim et al. [109], the therapeutic effi-
cacy of iPSC-derived chondrocytes was validated through 
a single intra-articular injection in a rat model with osteo-
chondral defects. After eight weeks post-transplantation, the 
injected iPSC-derived chondrocytes exhibited robust recov-
ery abilities, forming lacunae in vivo. Further research is 
needed to assess the clinical applicability of these cells and 
their potential for treating knee OA.

Multilineage‑Differentiating Stress‑Enduring Cells (MUSE 
CELL)

The Muse cells, found in adipose or bone marrow tissue, 
can be isolated by subjecting it to rigorous stress conditions, 
including exposure to collagenase enzyme, serum depriva-
tion, low temperatures, and oxygen deprivation. This method 
allows for the extraction of a pure population of Muse-AT 
cells without the requirement of cell sorting techniques. 
Unlike other adult stem cells, these cells are believed to pos-
sess pluripotent characteristics and exhibit a high survival 
rate when transplanted into different areas of the body [110]. 
Notably, unlike embryonic cells, they do not demonstrate 
tumor formation capabilities [111]. Moreover, Muse-AT 
cells display remarkable resistance to adverse conditions 
such as hypoxia, acidosis, temperature fluctuations, and toxic 
environments [112]. Given their ability to withstand harsh 
conditions, they appear to be well-suited for application 
in joint-related treatments [113]. Currently, adipose tissue 
seems to be the most favorable source for harvesting Muse 
cells, as it offers ease of extraction and relatively high yield 
[114]. They are easy to harvest with a relatively high yield.

Very Small Embryonic‑Like Stem Cells (V CELLS)

The scientific community is increasingly recognizing the 
significance of Very Small Embryonic-Like Stem Cells 
(V Cells). These cells were initially discovered in 2006 by 
Ratajczak and colleagues in bone marrow aspirate, display-
ing distinct characteristics [115]. Notably, V cells exhibit 
pluripotent markers such as SSEA-1, Oct-4, Nanog, and 
Rex-1, along with an open chromatin structure and a high 
nucleus-to-cytoplasm ratio [116]. Moreover, V cells dem-
onstrate elevated levels of telomerase activity, indicating 
relatively well-preserved DNA. In their inactive state, these 
smaller-than-average cells circulate in the blood and are 
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triggered by physiological stress. To activate V cells in a 
clinical setting, they are kept in a hypoxic environment at 
a temperature of four degrees centigrade for approximately 
12 h. Various methods are employed to enhance the release 
of V cells into the bloodstream from the bone marrow. 
Vitamin A and intravenous CoQ-10 have been identified as 
stimulants for these cells, and they can be administered via 
intravenous or intra-articular routes. Additionally, V cells 
possess a specific marker for parathyroid hormone (PTH) 
on their cell membrane [117]. Studies have indicated that 
PTH can promote the release of stem cells from the bone 
marrow. PTH delivery can be achieved through a patch or in 
oral homeopathic form. Intravenous administration of PTH 
has shown potential for extending the telomeres of immune 
system cells, further contributing to the growing acceptance 
of these cells over time. The precise role of V cells in joint 
regeneration is still under investigation. Typically, around 
200 CCs of blood yield approximately 30 CCs of the final 
cell solution, which is primarily administered intravenously 
and occasionally intra-articularly [2].

Mesechymal Stem Cells

Mesenchymal stem cells (MSCs) are increasingly being 
utilized in therapeutic applications due to their ability to 
migrate to sites of inflammation or tissue injury and secrete 
a variety of bioactive agents [118]. In response to injury, 
MSCs exhibit immunomodulatory properties that impact 
various components of the immune system, such as T-cells, 
regulatory T cells (Treg cells), and dendritic cells. Addition-
ally, MSCs possess trophic effects, including angiogenic, 
mitotic, antiapoptotic, chemoattractive, and regenerative 
properties. When administered to an injured area, MSCs 
may not necessarily survive long-term but can create a sup-
portive environment for other cells to carry out their func-
tions effectively. Furthermore, MSCs have been found to 
exhibit antibacterial properties through the production of 
a compound known as LL-37 or human cathelicidin anti-
microbial peptide, which helps prevent infections in joints 
during MSC-based therapies [119]. MSCs can differentiate 
into two distinct types depending on the inflammatory envi-
ronment they encounter [120]. Type II MSCs, which pre-
dominate in an inflammatory milieu, are involved in immune 
modulation, promotion of Treg cell production, inhibition of 
T-cell activity, and release of growth factors essential for 
tissue regeneration. On the other hand, type I MSCs can acti-
vate M1 macrophages and T-cells, potentially contributing to 
autoimmune diseases. In regenerative medicine applications, 
type II MSCs are generally preferred.

MSCs can be sourced from various tissues, with bone 
marrow aspirate and adipose tissue being the primary 
sources for medical purposes. While the number of MSCs 
in bone marrow decreases with age, adipose tissue provides 

a more consistent supply of MSCs that remains relatively 
stable over time. Adipose tissue-derived stem cells (ASCs) 
have the capacity to differentiate into different cell types 
originating from the three primary germ layers [121]. One 
challenge associated with utilizing MSCs from adipose tis-
sue is the isolation process. While free fat grafts can yield 
MSCs and Muse cells, breaking down adipose tissue is 
necessary to obtain a higher concentration of stem cells 
per volume. This process typically involves a liposuction 
technique similar to that used in plastic surgery, utilizing 
enzymatic and mechanical methods to break down the fat 
tissue effectively. Mechanical methods may involve special-
ized equipment designed to disintegrate adipose tissue into 
its constituent components [122].

MSCs, serving as precursors to mesodermal tissues, 
exhibit the ability to differentiate into various lineages, such 
as bone, cartilage, fat, muscle, tendon/ligament, and more. 
The induction of chondrogenic differentiation in MSCs 
involves cultivating them in a serum-free nutrient medium 
within a three-dimensional culture, supplemented with a 
member of the transforming growth factor (TGF)-b super-
family [123]. This process has positioned MSCs as prom-
ising candidates for therapeutic applications, especially in 
conditions like OA. OA, often associated with degenerative 
changes in the absence of adequate repair mechanisms, has 
been identified as a potential target for MSC-based therapy. 
The dysfunction in the MSC population might contribute to 
the development of OA, making MSCs a plausible option 
for intervention [123]. Using the regenerative capacity of 
MSCs, there is a prospect of repairing damaged tissues and 
replenishing lost cells in OA-affected joints [124]. A system-
atic review conducted by Shoukrie et al. [125] demonstrated 
the safety and efficacy of injecting mesenchymal stem cells 
into human knee joints for the treatment of OA. The find-
ings emphasize that MSC injections are not only safe but 
also effective in improving the condition of osteoarthritic 
joints, with minimal side effects. This research emphasized 
the potential of MSC-based therapies as a viable and well-
tolerated approach for addressing OA-related issues.

Genetically Modified Cells

The Food and Drug Administration (FDA) defines Gene 
Therapy as the use of nucleic acids, viruses, or genetically 
modified microbes to transfer genetic material into host 
cells, either directly in vivo or ex vivo. In the context of 
OA treatment, allogenic cartilage-derived chondrocytes are 
often utilized for gene therapy [126]. These chondrocytes 
are modified in vitro to deliver anti-inflammatory genes 
(IL-1Ra) or growth factors (TGF-1) before being injected 
into the patient's joint. IL-1 is a key target for gene therapy 
due to its role in inflammation, pain, and cartilage loss [127]. 
Transgenes are delivered to the joint cells to induce sustained 
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local synthesis of their products. TissueGene-C (TG-C) is 
an example of a gene therapy involving human allogenic 
chondrocytes modified to overexpress TGF-β1. Animal 
studies and clinical trials have shown promising results with 
TG-C, including improved joint structure and pain relief [128, 
129]. It has been shown in several clinical trials that TG-C 
improves the International Knee Documentation Committee 
(IKDC) and Visual Analog Scale (VAS) scores in patients 
with chronic degenerative knee OA [130, 131].

CRISPR/Cas9 technology offers precise genome editing 
of mammalian cells with minimal off-target effects. By using 
this technology, researchers aim to improve OA therapy by 
addressing inflammatory responses that may impact cell 
transplantation success. For instance, targeting genes associ-
ated with inflammation, such as IL-1β receptor (IL-1R1) and 
TAK1, has shown potential in reducing cytokine stimulation 
and inflammatory factor secretion in transplanted cartilage 
[132]. This highlights the importance of CRISPR/Cas9 in 
advancing precision medicine approaches for joint-related 
conditions [133]. CRISPR/Cas9 technology is demonstrating 
the potential to mitigate the inflammatory responses associ-
ated with treatment for OA [134], highlighting its impor-
tance in the advancement of precision medicine approaches 
for treating joint-related conditions.

A recent outcome registry by Drs. Rogers, Malanga, 
and Bowen covers a wide range of regenerative medicine 
treatments, including PRP, hyaluronic acid, bone marrow, 
adipose-derived mesenchymal cells, and other regenerative 
medicine treatments. PRP was found to be the most com-
monly used orthobiologic treatment in the registry, followed 
by adipose and BMAC [2].

Non‑Biological Therapies

Table 3 summarizes non-biological ttherapies studies in the 
treatment of osteoarthritis.

Gold Induced Cytokines

This unique regenerative therapy, known as GOLDIC®, or 
"Gold Induced Cytokines" is an all-natural solution to induce 
the healing potential of conditioned serum rich in cytokines 
(Gold-IC), and is achieved through the interaction of gold 
particles with the patient's own blood. Various in vitro studies 
have revealed that gold particles have an inhibitory effect 
on catabolic factors such as nitric oxide (NO), as well as an 
increase in both anticatabolic and anabolic factors. Despite 
the fact that the exact mechanism of GOLDIC® is still 
unclear, in vitro studies have shown an increase in plasma 
gelsolin levels in autologous serum, as well as in synovial 
fluid after intra-articular injection of GOLDIC® [144]. Ta
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With its documented benefits in animal studies, GOLDIC® 
therapy is emerging as a promising avenue for treating 
degenerative joint diseases in humans. Patients suffering from 
OA of the knee who have received GOLDIC® therapy have 
shown encouraging early clinical results, with a statistically 
significant improvement in their WOMAC scores and a 
noticeable reduction in their pain levels. It has been shown 
that GOLDIC® demonstrated a favorable safety profile, with 
patients expressing a willingness to recommend GOLDIC® 
to others based on their own experience [145, 146].

The Extracorporeal Shockwave Therapy 
(ESWT)

ESWT uses powerful shockwaves to help heal various mus-
culoskeletal disorders by promoting regenerative effects 
through growth factors and molecules. These shockwaves 
are generated through electrohydraulic, electromagnetic, and 
piezoelectric sources [147]. The therapy has been successful 
in treating conditions like plantar fasciitis, tendinopathies, 
fractures, and diabetic foot ulcers [148–150]. In cases of 
knee OA, ESWT has shown promising results in preserving 
cartilage and improving the microstructure of subchondral 
bone. It works by stimulating growth factors such as TGF-
β1 and VEGF, which help reduce cartilage degradation and 
promote the synthesis of ECM components for cartilage 
repair [151]. ESWT also enhances anabolic processes in the 
subchondral bone and by modulating nerve endings reduces 
pain markers, leading to pain relief and improved joint func-
tion [152]. Patients who undergo this therapy experience a 
significant improvement in their quality of life.

Ozone Therapy

Ozone has been demonstrated to possess analgesic, anti-inflam-
matory, immunomodulatory, and trophic properties [153, 154]. 
In the treatment of OA, a series of intra-articular injections 
are typically administered once a week for approximately 6 
to 7 weeks. Each injection involves the introduction of 10–20 
CCs of ozone (O3) into the affected joint. The concentration 
of ozone is variable according to various studies and is in the 
range of 10–40 μg/ml [155]. Ozone exerts various effects on the 
joint, including the inhibition of PGE2 synthesis of nitric oxide 
(NO), suppression of pro-inflammatory cytokines (such as IL-1, 
TNF, IFN) [154], stimulation of anti-inflammatory cytokines 
(such as IL-4, IL-10, IL-13), and promotion of growth factors 
like TGF-beta and IGF-1 [156]. Although ozone therapy shows 
promise, further clinical trials are needed to establish its effi-
cacy. Consequently, it could be considered a valuable adjunct 
in regenerative therapies.

Supplements to Increase Success

Supplements play a crucial role in regenerative medicine, 
with several options available for this purpose. One nota-
ble supplement is Neo-40, which has been shown to boost 
nitric oxide (NO) levels in the body. This increase in NO 
has a similar effect to hyperbaric oxygen therapy, leading 
to an enhanced output of stem cells [28]. Another supple-
ment, UltraCur, is a highly potent form of curcumin that 
offers greater bioavailability compared to standard curcumin 
products. By inhibiting interleukin 1, UltraCur effectively 
reduces inflammation in the extracellular matrix. StemXCell 
is yet another supplement that has been found to stimulate 
the release of stem cells from the bone marrow, similar to 
the effects of GCSF [157]. Lastly, CH-Alpha is a supplement 
that provides collagen for repair purposes [158]. Alongside 
these supplements, maintaining hormonal balance and tak-
ing multivitamins are also crucial factors for success in the 
field of regenerative medicine.

Conclusion

Regenerative therapies for OA have evolved from the con-
cept of administered cells engrafting to lesion sites to the use 
of intra-articular injectable orthobiologics aimed at reliev-
ing symptoms, slowing disease progression, and potentially 
preventing joint replacement. These therapies fall into two 
main categories: cell-based and cell-free treatments. Cell-
free therapies like PRP and AAIs have shown promise in 
alleviating inflammation and promoting cartilage regen-
eration. Exosomes, derived from stem cells, have demon-
strated the ability to stimulate cartilage repair and modulate 
the immune response in the joint. HPE and mitochondrial 
transplantation offer potential benefits in reducing pain, 
improving joint function, and regulating immune responses.

Cell based therapy, whether derived from bone marrow 
or adipose tissue, offers the potential for tissue repair and 
regeneration through the differentiation of stem cells into 
various cell types involved in cartilage and bone repair. 
Additionally, stem cells exhibit immunomodulatory 
properties that can mitigate inflammation and slow down 
the progression of OA. Furthermore, emerging technologies 
such as CRISPR/Cas9 hold promise for enhancing the 
effectiveness of cell-based therapies by targeting specific 
genes associated with inflammation, thereby improving the 
outcomes of treatment for OA.

Non-biological treatments such as GOLDIC®, 
Extracorporeal Shockwave therapy, Ozone therapy, and 
supplements are showing promising results in the field of 
regenerative medicine for treating degenerative joint diseases, 
particularly knee OA. These therapies offer regenerative 
benefits, reduce cartilage degradation, promote the synthesis of 
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essential extracellular matrix components specific to cartilage, 
modulate nerve endings to decrease pain-related markers, and 
improve overall joint function and quality of life for patients.

In conclusion, the field of orthobiological treatments 
for OA is diverse, with various therapies showing promise 
in reducing inflammation, promoting tissue repair, and 
improving joint function. Further research is needed to 
establish the safety, efficacy, and long-term benefits of these 
treatments, as well as to optimize their formulations and 
concentrations for maximizing effectiveness in cartilage 
repair and OA management.
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